ТЕРМОПРЕОБРАЗОВАТЕЛИ СОПРОТИВЛЕНИЙ С УНИФИЦИРОВАННЫМ ВЫХОДНЫМ СИГНАЛОМ ТСМУ-1088, ТСПУ-1088

ТСПУ-1088.50N100P.120.40.8

ΠΑCΠΟΡΤ ME.023504.101-015ΠC Настоящий документ является совмещенным и содержит разделы технического описания, руководства по эксплуатации и паспорта

СОДЕРЖАНИЕ

1. НАЗНАЧЕНИЕ	3
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
3. СОСТАВ И КОМПЛЕКТНОСТЬ ИЗДЕЛИЯ	6
4. УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ	6
5. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ	7
6. МАРКИРОВКА	7
7. ТАРА И УПАКОВКА	8
8. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	8
9. ПОРЯДОК УСТАНОВКИ И МОНТАЖ	9
10. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ ЭКСПЛУАТАЦИИ	10
11. МЕТОДИКА ПОВЕРКИ	.11
12. СРОК СЛУЖБЫ, ХРАНЕНИЕ, ТРАНСПОРТИРОВАНИЕ	.16
13. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	.16
14. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	.17
ПРИЛОЖЕНИЕ 1Габаритные размеры и варианты исполнений термопреобразователей с унифицированным выходным сигналом	18
ПРИЛОЖЕНИЕ 2 Номенклатура термопреобразователей с унифицированным выходным сигналом	21
ПРИЛОЖЕНИЕ 3 Форма протокола поверки	22

ВНИМАНИЕ! Применение термопреобразователей сопротивления во взрывоопасной зоне «0» допускается при наличии маркировки взрывозащиты 0ExialIBT4 X и включении термопреобразователей в искробезопасные цепи барьеров искрозащиты, имеющих маркировку взрывозащиты не ниже ExialIB.

В случае применения термопреобразователей сопротивления во взрывоопасной зоне «1» термопреобразователи имеют маркировку взрывозащиты 1ExibIIBT4 X и могут включаться в искробезопасные цепи барьеров искрозащиты с маркировкой ExibIIB.

1. НАЗНАЧЕНИЕ

- 1.1 Термопреобразователи сопротивлений с унифицированным выходным сигналом ТСМУ-1088, ТСПУ-1088, далее по тексту термопреобразователи, предназначены для измерения температуры газообразных и жидких сред, сыпучих веществ.
- 1.2 Выходным сигналом термопреобразователя является унифицированный выходной нормированный сигнал постоянного тока 4...20 мА, прямо пропорциональный диапазону измеряемой температуры. Питание и передача выходного сигнала термопреобразователя осуществляется по двухпроводной токовой петле 4...20 мА. Зависимость изменения выходного сигнала от изменения измеряемой температуры линейная.
- 1.3 Конструкция термопреобразователей соответствует термопреобразователям сопротивлений по ТУ 25-7363.032, ТУ 25-7363.042, ТУ У 33.2-14242882-001.
- 1.4 Степень защиты термопреобразователей от внешних воздействий обеспечивается его конструкцией и соответствует IP65 по ГОСТ 14254.
- 1.5 Термопреобразователи сопротивлений с унифицированным выходным сигналом ТСМУ-1088, ТСПУ-1088 могут применяться во взрывоопасных зонах помещений и наружных установок, в которых возможно образование взрывоопасных смесей газов и паров с воздухом категории IIB групп Т1-Т4 по НПАОП 40.1-1.32-01.
- 1.6 Термопреобразователи сопротивлений ТСМУ-1088, ТСПУ-1088 обеспечивают вид взрывозащиты «искробезопасная электрическая цепь» по ГОСТ 22782.5 и имеют маркировку взрывозащиты 0ExiaIIBT4 X / 1ExibIIBT4 X.

Номер для заказа	Обозначение	Обозначение в документации
23504015	ТСПУ-1088.50N100P.120.40.8	ME.023504.101-015

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Технические характеристики термопреобразователя указаны в таблице 2.1.

Таблица 2.1 - Технические характеристики термопреобразователя

Входные характеристики	
Номинальная статическая характеристика термопреобразователя	Pt100
	W100 1,385
Диапазон измеряемых температур, °С	-50+100
Диапазон сопротивлений чувствительного элемента термопреобразо-	80,31138,51
вателя, соответствующий диапазону измеряемых температур, Ом	
Выходные характеристики	
Схема подключения термопреобразователя	двухпроводная
Диапазон выходного нормированного сигнала постоянного тока, мА	420

Выходной сигнал при значении температуры превышающей диапазон	≈24
измеряемых температур, мА	
Выходной сигнал при значении температуры ниже диапазона измеряе-	≈3,2
мых температур, мА	
Выходной сигнал при обрыве / замыкании выводов чувствительного	≈2,7 / ≈3,2
элемента термопреобразователя, мА	
Максимальное сопротивление нагрузки Rн [Ом] выходной токовой	$U_{0} - 7.5$
петли рассчитывается по формуле:	$R_{H} = \frac{U_{p} - 7.5}{0.03} - R_{W}$
где U _P – напряжение питания преобразователя;	,
Rw – сопротивление проводов токовой петли	
Номинальное сопротивление нагрузки выходной токовой петли, Ом	250
Общие характеристики	
Пределы допускаемой основной приведенной к диапазону выходного	±1,0
сигнала погрешности у, %	
Пределы дополнительной приведенной к диапазону выходного сигнала	±0,005
погрешности в рабочем диапазоне температур, %/°С	
Пределы дополнительной приведенной к диапазону выходного сигнала	±0,05
погрешности, вызванной изменением напряжения питания термопре-	
образователя в пределах от его минимального значения до максималь-	
ного при значении номинального сопротивления нагрузки, %	
Пределы дополнительной приведенной к диапазону выходного сигнала	±0,05
погрешности, вызванной изменением сопротивления нагрузки выход-	
ной токовой петли в диапазоне от 50 Ом до 500 Ом при номинальном	
напряжении питания термопреобразователя, %	
Питание термопреобразователя: напряжение постоянного тока U _P , B	+9+36
Номинальное напряжение питания термопреобразователя, В	+24
Сопротивление изоляции при 25 ±10 °C и относительной влажности от	100
35% до 80%, не менее, МОм	
Показатель тепловой инерции, с	1825
Условное давление измеряемой среды, не более, МПа	6,3
Длина монтажной погружной части L / наружной части X, мм	120 / 40
Диаметр монтажной погружной части, D, мм	8
Материал защитной арматуры, сталь	12X18H10T
Рабочая температура окружающего воздуха наружной части термопре-	-40+70
образователя, °С	
Относительная влажность при температуре +35°C, %	3595
Температура хранения, °С	-40+70
Сечение провода, подключаемого в клеммы изделия, мм ²	0,141,5
Вид клемм для подключения проводов	винтовые
оид клемм для подключения проводов	винтовые

- 2.2 В термопреобразователе предусмотрена защита от неправильного подключения полярности напряжения питания по ГОСТ 30232: диодный мост. Термопреобразователь работает при любой полярности напряжения питания.
- 2.3 В термопреобразователе предусмотрена защита от кратковременных помех перенапряжений: диод-супрессор, LC-фильтр. Слаботочные перенапряжения подавляются, термопреобразователь сохраняет работоспособность. Мощные помехи могут привести к выходу из строя индуктивного фильтра, термопреобразователь необходимо заменить.
 - 2.4 Термопреобразователи соответствуют требованиям ГОСТ 30232.
- 2.5 В соответствии с ГОСТ 12997 термопреобразователь является изделием третьего порядка и не требует обязательного размещения внутри других изделий при эксплуатации.
- 2.6 Сопротивление чувствительного элемента термопреобразователя зависит от номинальной статической характеристики НСХ и измеряемой температуры, и соответствует значениям представленным в таблицах ДСТУ 2858 (ГОСТ 6651).
- 2.7 Питание термопреобразователя и передача выходного нормированного сигнала постоянного тока 4...20 мА в нагрузку осуществляется по двухпроводной токовой петле.
 - 2.8 В соответствии с ГОСТ 30232 термопреобразователи являются:
- 2.8.1 по зависимости изменения выходного сигнала от изменения измеряемой температуры с линейной зависимостью;
 - 2.8.2 по связи между входными и выходными цепями с гальванической связью;
- 2.8.3 по наличию регулировки начала и конца поддиапазона измерения без регулировки;
- 2.8.4 по типу применяемых первичных преобразователей термопреобразователи сопротивления по ДСТУ 2858 (ГОСТ 6651);
 - 2.9 В соответствии с ГОСТ 12997 термопреобразователи являются:
 - 2.9.1 предназначенными для информационной связи с другими изделиями;
 - 2.9.2 по виду энергии носителя сигналов электрические;
 - 2.9.3 по метрологическим свойствам средства измерения;
- 2.9.4 термопреобразователи одной и той же модификации и исполнения являются взаимозаменяемыми;
- 2.10 Значение температуры Т, измеренное термопреобразователем, рассчитывается исходя из значения выходного сигнала Y по формуле 2.1.

$$T = \frac{Y - Y_{MNH}}{Y_{MAKC} - Y_{MNH}} \times (T_{MAKC} - T_{MNH}) + T_{MNH}$$
 (2.1)

где Т_{мин} , Тмакс - соответственно минимальное и максимальное значения диапазона измеряемых температур;

Y_{мин} , Y_{макс} - соответственно минимальное и максимальное значения диапазона выходного сигнала (Y_{мин} = 4 мA, Y_{макс} = 20 мA);

Т - значение измеряемой температуры; Y - значение выходного сигнала, мА.

3. СОСТАВ И КОМПЛЕКТНОСТЬ ИЗДЕЛИЯ

Обозначение	Наименование	Кол-во	Примечание
ME.023504.101-015	Термопреобразователь сопротивления		
	23504015 ТСПУ-1088.50N100P.120.40.8		
ME.023504.101-015ΠC	Термопреобразователь сопротивления	1	1 экз. на пар-
	ТСПУ-1088.50N100P.120.40.8. Паспорт		тию до 25 шт.

4. УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ

- 4.1 Термопреобразователь осуществляет измерение температуры путем преобразования сигнала чувствительного элемента в унифицированный выходной нормированный сигнал постоянного тока 4...20 мА.
- 4.2 Термопреобразователь состоит из чувствительного элемента первичного преобразователя и измерительного преобразователя
- 4.3 Сигнал чувствительного элемента термопреобразователя сопротивление, зависит от его номинальной статической характеристики и измеряемой температуры. Значения сигнала определены в ДСТУ 2858 (ГОСТ 6651).
- 4.4 Источник тока измерительного преобразователя осуществляет питание чувствительного элемента термопреобразователя, входной инструментальный усилитель производит усиление входного сигнала, который поступает в каскад формирования выходного сигнапа
- 4.5 Цифро-аналоговые преобразователи измерительного преобразователя формируют сигналы смещения входного усилителя для коррекции нелинейности НСХ в измеряемом температурном диапазоне.
- 4.6 Значения диапазона температур, коэффициенты HCX термопреобразователя, калибровочные коэффициенты хранятся в энергонезависимой памяти измерительного преобразователя.
- 4.7 Измерительный преобразователь запрограммирован, откалиброван, проверен в сборе с первичным преобразователем на предприятии-изготовителе.
- 4.8 Конструктивно, измерительный преобразователь представляет собой печатную плату с элементами, которая установлена в головке наружной части термопреобразователя. Для защиты от случайных механических воздействий при монтаже элементы печатной платы измерительного преобразователя покрыты эпоксидным компаундом.
- 4.9 Габаритные размеры термопреобразователей с унифицированным выходным сигналом представлены в приложении 1 настоящего паспорта.
- 4.10 Термопреобразователь подключается к источнику питания и сопротивлению нагрузки по двухпроводной схеме. Полярность подключения источника питания любая. Схема подключения представлена на рисунке 4.1. В таблице 4.1 представлено описание контактов термопреобразователя. Во взрывоопасных зонах термопреобразователи включаются в искробезопасные цепи барьеров искрозащиты, источников питания и регистрирующей аппаратуры, имеющей вид взрывозащиты «искробезопасная электрическая цепь» и маркировку взрывозащиты 0ExiaIIB X для взрывоопасной зоны «0» и маркировку 1ExibIIB X для взрывоопасной зоны «1».

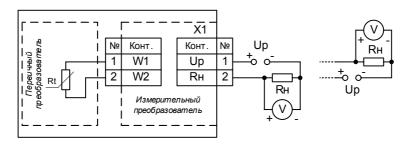


Рис. 4.1 Схема подключения термопреобразователя

Таблица 4.1 - Контакты термопреобразователя

№ конт.	Наимен.	Описание
1	W1	Провод 1 первичного преобразователя
2	W2	Провод 2 первичного преобразователя
X1 1	Up	Цепь напряжение питания термопреобразователя
X1 2	Rн	Цепь сопротивления нагрузки

5. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ

- 5.1 Взрывозащищенность термопреобразователей обеспечивается видом взрывозащиты «искробезопасная электрическая цепь» по ГОСТ 22782.5 и достигается за счет искробезопасности электрических цепей термопреобразователя, конструктивными решениями и обеспечивается следующими средствами.
- 5.1.1 Конструктивными и схемными решениями термопреобразователя в соответствии с требованиями ГОСТ 22782.0, ГОСТ 22782.5.
- 5.1.2 Покрытием элементов измерительного преобразователя эпоксидным компаундом.
- 5.1.3 Включением термопреобразователей в искробезопасные цепи барьеров искрозащиты, источников питания и регистрирующей аппаратуры со следующими параметрами: $U_0 \le 24$ B; $I_0 \le 94$ мA; $I_0 \le 1$ мГн; $I_0 \le 0.8$ мкФ; $I_0 \le 1.3$ Вт.
- 5.1.4 Наличием цветовой маркировки на шильдике термопреобразователя по ГОСТ 22782.5, а также маркировки взрывозащиты 0ExialIBT4 X / 1ExibIIBT4 X, в зависимости от взрывоопасной зоны применения, где «Х» означает особые условия применения термопреобразователей во взрывоопасных зонах (см. п.5.1.3.).

6. МАРКИРОВКА

- 6.1 На корпусе термопреобразователя установлен шильдик с маркировкой, соответствующей требованиям ГОСТ 26828, ГОСТ 22782.5. Шильдик прикреплен к корпусу термопреобразователя в виде накладного элемента на самоклеющейся основе.
- 6.2 Маркировочные надписи на шильдике, в соответствии с 2.7 ГОСТ 26828, выполнены буквами русского и латинского алфавита, арабскими цифрами. Шильдик обеспечивают сохранность и чёткость изображения в течение всего срока службы термопреобразователя при соблюдении условий хранения и эксплуатации.

- 6.3 Шильдик имеет следующие знаки и надписи:
- 6.3.1 товарный знак предприятия-изготовителя;
- 6.3.2 обозначение термопреобразователя;
- 6.3.3 НСХ номинальную статическую характеристику и коэффициент НСХ;
- 6.3.4 диапазон измеряемых температур, на который настроен термопреобразователь;
- 6.3.5 длину и диаметр монтажной части термопреобразователя;
- 6.3.6 диапазон изменения выходного сигнала;
- 6.3.7 маркировку взрывозащиты 0ExiaIIBT4 X / 1ExibIIBT4 X, цветовую маркировку взрывозащиты полосу голубого цвета по ГОСТ 22782.5;
- 6.3.8 параметры искробезопасных цепей: Ui ≤ 24 B; Ii ≤ 50мA; Li ≤ 0,1 мГн; Ci ≤ 0,2 мкФ; Pi ≤ 1,2 Вт;
 - 6.3.9 обозначение степени защиты от внешних воздействий и год выпуска;
- 6.3.10 национальный знак соответствия и идентификационный номер сертификационного центра.
- 6.4 На плате измерительного преобразователя в виде накладных элементов на самоклеющейся основе нанесен серийный номер термопреобразователя, коэффициент с обозначением НСХ и диапазон измеряемых температур на который настроен термопреобразователь.

7. ТАРА И УПАКОВКА

- 7.1 Упаковка термопреобразователей обеспечивает их сохранность при хранении и транспортировке. Термопреобразователи упаковываются в потребительскую и транспортную тару согласно ГОСТ 9181.
- 7.2 Каждый термопреобразователь упаковывается в потребительскую тару бумагу оберточную по ГОСТ 8273. В качестве транспортной тары применяются ящики по ГОСТ 22852 из гофрированного картона по ГОСТ 7376.
- 7.3 Термопреобразователи в транспортной таре, при необходимости, закрепляются амортизационными материалами, в качестве которых применяется гофрированный картон по ГОСТ 7376 или обрезки бумаги оберточной. В качестве влагопоглотителя в потребительской и транспортной таре применяется мелкопористый силикагель по ГОСТ 3956.
- 7.4 Паспорта на термопреобразователи и сопроводительные документы вложены по ГОСТ 9181 в транспортную тару. Картонные коробки и ящики из гофрированного картона оклеиваются лентой клеевой.
- 7.5 Термопреобразователи в транспортной таре выдерживают воздействие температуры от –40 до +70°C и относительную влажность до 95% при температуре 35°C.
- 7.7 Термопреобразователи в транспортной таре являются прочными к воздействию вибрации по группе N2 ГОСТ 12997 места подверженные вибрации от работающих механизмов (железнодорожный и (или) автомобильный транспорт).

8. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

8.1 По способу защиты человека от поражения электрическим током термопреобразователи относятся к классу III по ГОСТ 12.2.007.0.

- 8.2 Конструкция, расположение клемм и установочных отверстий выполнены с учётом удобства монтажа и безопасности наблюдения за термопреобразователями при выполнении подключения, проведении осмотра, испытаний и обслуживания.
- 8.3 Подключение и замена внешних кабелей, монтаж и отсоединение термопреобразователей должно осуществляться при выключенном питании.
- 8.4 Замена, отсоединение, присоединение термопреобразователей к трубопроводам объекта эксплуатации производится при полном отсутствии избыточного давления.
- 8.5 При эксплуатации термопреобразователей необходимо соблюдать требования ГОСТ 12.3.019, «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей», а также других документов, действующих в данной отрасли промышленности.

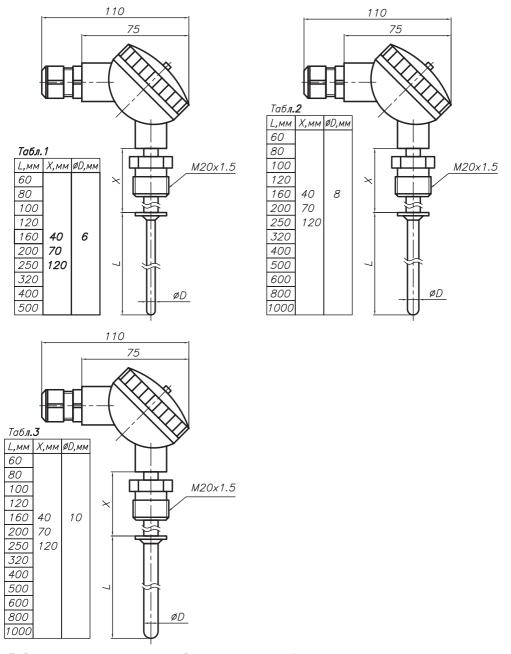
9. ПОРЯДОК УСТАНОВКИ И МОНТАЖ

- 9.1 При получении термопреобразователей установить сохранность тары. В случае её повреждения следует обратиться с рекламацией к транспортной организации.
- 9.2 В зимнее время необходимо распаковывать коробки с термопреобразователями в отапливаемом помещении не менее чем через 12 ч. после внесения их в помещение.
- 9.3 Распаковать термопреобразователи и убедиться в том, что они укомплектованы в соответствии с разделом 3 «Состав и комплектность изделия» настоящего паспорта.
- 9.4 Присоединить термопреобразователь к трубопроводу объекта эксплуатации. Габаритные размеры термопреобразователей с унифицированным выходным сигналом представлены в приложении 1 настоящего паспорта. Подключить двухпроводный сигнальный кабель к клеммам термопреобразователя.
 - 9.5 Порядок подключения термопреобразователя к сигнальной цепи.
 - 9.5.1 Открутить крышку головки термопреобразователя.
- 9.5.2 Сигнальный кабель ввести в головку через кабельный ввод в вводном отделении корпуса головки термопреобразователя.
- 9.5.3 Два сигнальных провода подключить к разъёму X1 термопреобразователя. Полярность подключения любая. Схема подключения термопреобразователя представлена на рис. 4.1.
- 9.5.4 Закрутить отверткой винты в клемме X1. Специальная система стопорения винта в клемме препятствует его саморазвинчиванию, а применение высококачественных медных сплавов обеспечивает долговременное надежное соединение, даже в самых жестких условиях эксплуатации.
- 9.5.5 Закрутить кабельный ввод вводного отделения корпуса головки термопреобразователя. Проверить, чтобы выходной сигнальный кабель не выдергивался и не проворачивался в уплотнении кабельного ввода. Сальниковое уплотнение кабельного ввода обеспечивает механическую фиксацию сигнального кабеля и герметичность ввода.
- 9.5.6 Закрутить крышку головки термопреобразователя, при этом необходимо убедиться в наличии резинового уплотнительного кольца, обеспечивающего степень защиты корпуса головки термопреобразователя от внешних воздействий IP65.
 - 9.6 Выбор и прокладка соединительных кабелей.

- 9.6.1 В качестве сигнального кабеля, соединяющего преобразователь с нагрузкой (вторичными устройствами), можно использовать любой тип контрольного двухпроводного кабеля с многопроволочными (гибкими) медными проводами сечением 0,34...1,0 мм².
- 9.6.2 Рекомендуется использовать следующие типы кабеля: $16002\ 2x0.5\ \text{мм}^2$ TRONIC-CY (пара многопроволочных проводов сечением по 0.5мm^2 в повив в экране, диаметр кабеля 5.4мm), $16026\ 2x0.75\ \text{mm}^2$ TRONIC-CY (провода сечением по 0.75mm^2 , диаметр кабеля 6.2mm), $16475\ 2x1.0\ \text{mm}^2$ TRONIC-CY (провода сечением по 1.0mm^2 , диаметр кабеля 6.5mm) производства HELUKABEL.
- 9.6.3 Прокладку кабеля выполнять согласно НПАОП 40.1-1.32-01, на расстоянии не менее 0,5м от силовых кабелей с током более 5А. Длина сигнального кабеля не должна превышать 300м.
 - 9.7 Обеспечение взрывозащищенности при монтаже термопреобразователей.
- 9.7.1 При монтаже термопреобразователей необходимо руководствоваться и соблюдать требования гл.4 НПАОП 40.1-1.32-01 «Правила устройства электроустановок. Электрооборудование специальных установок», ГОСТ 22782.5, Инструкцией по монтажу электрооборудования, силовых и осветительных сетей взрывоопасных зон ВСН-322-74, инструкциями изделий, в составе которых применяются термопреобразователи, настоящим паспортом.
- 9.7.2 Длина выходного сигнального кабеля не должна превышать 300м. Емкость и индуктивность кабеля не должны превышать значений Ск<0,25мкф и Lк<1мГн соответственно. Экранная оплетка сигнального кабеля соединяется с цепью защитного заземления в одной точке во взрывобезопасной зоне.
- 9.8 Термопреобразователи предназначены для стационарной установки и работы в условиях не хуже указанных в разделе 2 настоящего паспорта.

10. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ. ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ПРИ ЭКСПЛУАТАЦИИ

- 10.1 К техническому обслуживанию допускаются лица, изучившие настоящий паспорт и прошедшие необходимый инструктаж. При техническом обслуживании необходимо руководствоваться настоящим паспортом, нормативными документами, действующими в данной отрасли промышленности.
- 10.2 Техническое обслуживание термопреобразователей сводится к соблюдению правил монтажа и эксплуатации, изложенных в настоящем паспорте, проведению периодической поверки термопреобразователей, профилактическим осмотрам.
- 10.3 Профилактический осмотр включает в себя внешний осмотр и проверку условий эксплуатации.
 - 10.4 Внешний осмотр включает в себя:
 - 10.4.1 проверку отсутствия пыли и грязи на оболочке электрооборудования;
- 10.4.2 проверку отсутствия видимых механических повреждений головки термопреобразователя, коррозии и ржавчины на корпусе электрооборудования;
 - 10.4.3 проверку целостности уплотнительных прокладок термопреобразователя;
 - 10.4.4 проверку отсутствия грязи и влаги внутри головки термопреобразователя;


12. СРОК СЛУЖБЫ, ХРАНЕНИЕ, ТРАНСПОРТИРОВАНИЕ

- 12.1 Термопреобразователи являются восстанавливаемыми, ремонтируемыми изделиями.
 - 12.2 Срок службы термопреобразователей: 8 лет.
- 12.3 Термопреобразователи могут храниться как в транспортной, так и в потребительской таре в соответствии с условиями хранения 4 по ГОСТ 15150.
- 12.4 Расположение термопреобразователей в хранилищах по ГОСТ 12997 должно обеспечивать их свободное перемещение и доступ к ним. Термопреобразователи следует хранить на стеллажах. Расстояние между стенами, полом хранилища и термопреобразователями должно быть не менее 100 мм. Расстояние между отопительными устройствами хранилища и термопреобразователями должно быть не менее 0,5м.
- 12.5 Транспортирование термопреобразователей в транспортной таре может проводиться всеми видами транспорта в крытых транспортных средствах, самолётами в герметизированных отапливаемых отсеках. Условия транспортирования должны быть не хуже условий 5 по ГОСТ 15150.
- 12.6 Размещение и крепление в транспортных средствах упакованных термопреобразователей по ГОСТ 12997 должно обеспечивать их устойчивое положение, исключать возможность ударов друг о друга, а также о стенки транспортных средств.
- 12.7 Во время погрузочно-разгрузочных работ термопреобразователи в транспортной таре не должны подвергаться резким ударам и воздействию атмосферных осадков.
- 12.8 Термопреобразователи следует распаковывать по ГОСТ 12997 в закрытых вентилируемых помещениях при температуре окружающего воздуха от +5 до +40°С и относительной влажности до 80%.

13. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 13.1 Предприятие-изготовитель гарантирует по ГОСТ 12997 соответствие термопреобразователей требованиям настоящего паспорта при соблюдении условий эксплуатации, хранения и транспортирования.
- 13.2 Гарантийный срок эксплуатации термопреобразователей 18 месяцев от даты реализации, но не более 24 месяца с момента изготовления.
- 13.3 Ремонтные работы, гарантийное и послегарантийное обслуживание выполняет ЧП «Маранта Электро». Адрес: ул. Академика Крымского, 4-А, г. Киев, 03142, тел. (044) 228-86-81, mail: info@maranta-electro.com.ua, www.maranta.com.ua

ПРИЛОЖЕНИЕ 1 Габаритные размеры и варианты исполнений термопреобразователей с унифицированным выходным сигналом

Габаритный чертеж термопреобразователей с унифицированным выходным сигналом

ПРИЛОЖЕНИЕ 1 (продолжение)

Таблица П 1.1 - Номенклатура размеров монтажной части термопреобразователей с унифицированным выходным сигналом

Длина	Длина	Диаметр	Номер
погружной	наружной	погружной	размера
части L,мм	части Х,мм	части D,мм	l [.]
60	40	6	001
80	40	6	002
100	40	6	003
120	40	6	004
160	40	6	005
200	40	6	006
250	40	6	007
320	40	6	008
400	40	6	009
500	40	6	010
60	40	8	012
80	40	8	013
100	40	8	014
120	40	8	015
160	40	8	016
200	40	8	017
250	40	8	018
320	40	8	019
400	40	8	020
500	40	8	021
600	40	8	022
800	40	8	023
1000	40	8	024
60	40	10	026
80	40	10	027
100	40	10	028
120	40	10	029
160	40	10	030
200	40	10	031
250	40	10	032
320	40	10	033
400	40	10	034
500	40	10	035
600	40	10	036
800	40	10	037
1000	40	10	038

Длина	Длина	Диаметр	Номер
погружной	наружной	погружной	размера
части L,мм	части Х,мм	части D,мм	
60	70	6	040
80	70	6	041
100	70	6	042
120	70	6	043
160	70	6	044
200	70	6	045
250	70	6	046
320	70	6	047
400	70	6	048
500	70	6	049
60	70	8	051
80	70	8	052
100	70	8	053
120	70	8	054
160	70	8	055
200	70	8	056
250	70	8	057
320	70	8	058
400	70	8	059
500	70	8	060
600	70	8	061
800	70	8	062
1000	70	8	063
60	70	10	065
80	70	10	066
100	70	10	067
120	70	10	068
160	70	10	069
200	70	10	070
250	70	10	071
320	70	10	072
400	70	10	073
500	70	10	074
600	70	10	075
800	70	10	076
1000	70	10	077

ПРИЛОЖЕНИЕ 1 (продолжение)

Продолжение таблицы П 1.1

Длина	Длина	Диаметр	Номер
погружной	наружной	погружной	размера
части L,мм	части Х,мм	части D,мм	ļ. ·
60	120	6	079
80	120	6	080
100	120	6	081
120	120	6	082
160	120	6	083
200	120	6	084
250	120	6	085
320	120	6	086
400	120	6	087
500	120	6	088
60	120	8	090
80	120	8	091
100	120	8	092
120	120	8	093
160	120	8	094
200	120	8	095
250	120	8	096
320	120	8	097
400	120	8	098
500	120	8	099
600	120	8	100
800	120	8	101
1000	120	8	102
60	120	10	104
80	120	10	105
100	120	10	106
120	120	10	107
160	120	10	108
200	120	10	109
250	120	10	110
320	120	10	111
400	120	10	112
500	120	10	113
600	120	10	114
800	120	10	115
1000	120	10	116

ПРИЛОЖЕНИЕ 2

Номенклатура термопреобразователей с унифицированным выходным сигналом

Таблица П 2.1 - Номенклатура термопреобразователей с унифицированным выходным сигналом

Номер для	Обозначение изделия ²⁾	HCX W ₁₀₀	Диапазон
заказа ¹⁾			температур, °С
23203XXX	ТСМУ-1088.50N50P.L.X.D	100M 1,428	-50+50
23204XXX	ТСМУ-1088.50N100P.L.X.D	100M 1,428	-50+100
23205XXX	ТСМУ-1088.50N150P.L.X.D	100M 1,428	-50+150
23206XXX	ТСМУ-1088.50N180P.L.X.D	100M 1,428	-50+180
23209XXX	ТСМУ-1088.20N50P.L.X.D	100M 1,428	-20+50
23210XXX	ТСМУ-1088.20N100P.L.X.D	100M 1,428	-20+100
23216XXX	ТСМУ-1088.0N50P.L.X.D	100M 1,428	0+50
23217XXX	ТСМУ-1088.0N100P.L.X.D	100M 1,428	0+100
23218XXX	ТСМУ-1088.0N125P.L.X.D	100M 1,428	0+125
23219XXX	ТСМУ-1088.0N150P.L.X.D	100M 1,428	0+150
23220XXX	ТСМУ-1088.0N180P.L.X.D	100M 1,428	0+180
23503XXX	ТСПУ-1088.50N50P.L.X.D	Pt100 1,385	-50+50
23504XXX	ТСПУ-1088.50N100P.L.X.D	Pt100 1,385	-50+100
23505XXX	ТСПУ-1088.50N150P.L.X.D	Pt100 1,385	-50+150
23506XXX	ТСПУ-1088.50N180P.L.X.D	Pt100 1,385	-50+180
23507XXX	ТСПУ-1088.50N200P.L.X.D	Pt100 1,385	-50+200
23508XXX	ТСПУ-1088.50N350P.L.X.D	Pt100 1,385	-50+350
23509XXX	ТСПУ-1088.20N50P.L.X.D	Pt100 1,385	-20+50
23510XXX	ТСПУ-1088.20N100P.L.X.D	Pt100 1,385	-20+100
23511XXX	ТСПУ-1088.20N200P.L.X.D	Pt100 1,385	-20+200
23516XXX	ТСПУ-1088.0N50P.L.X.D	Pt100 1,385	0+50
23517XXX	ТСПУ-1088.0N100P.L.X.D	Pt100 1,385	0+100
23518XXX	ТСПУ-1088.0N125P.L.X.D	Pt100 1,385	0+125
23519XXX	ТСПУ-1088.0N150P.L.X.D	Pt100 1,385	0+150
23520XXX	ТСПУ-1088.0N180P.L.X.D	Pt100 1,385	0+180
23521XXX	ТСПУ-1088.0N200P.L.X.D	Pt100 1,385	0+200
23523XXX	ТСПУ-1088.0N250P.L.X.D	Pt100 1,385	0+250
23525XXX	ТСПУ-1088.0N300P.L.X.D	Pt100 1,385	0+300
23527XXX	ТСПУ-1088.0N350P.L.X.D	Pt100 1,385	0+350
23529XXX	ТСПУ-1088.0N400P.L.X.D	Pt100 1,385	0+400
23532XXX	ТСПУ-1088.0N500P.L.X.D	Pt100 1,385	0+500

 $^{^{1)}}$ XXX – номер размера монтажной части термопреобразователя указан в таблице П 1.1 приложения 1 настоящего паспорта

²⁾ L.X.D – размеры монтажной части: L – длина погружной части, мм; X – длина наружной части, мм; D – диаметр монтажной части, мм